Origins of Distributed Systems 1: Transparency

computer networks research

around 1977

had

telnet (remote login)

ftp (simple file transfer)

what next?

software vision

a set of networked computers with

interhost *transparent boundaries*

looks centralized

Transparent boundaries means what?

VM level:

single virtual and real address spaces

ipc level:

- single space of pids;
- ability to send messages to local & remote
- processes by the SAME mechanism.
- (transparency of host boundaries)

Transparent boundaries means what?

- data management level:
 - physically distributed (replicated or partitioned) relational databases which appear logically unitary.

application level:

a collection of networked computers which appears to users & application programmers as a single mainframe (awk!) - enterprise computing

Why bother? just use a mainframe!

Origins of Distributed Systems 2: microelectronics:

microprocessors on single chip

- \$2 manufacturing cost, versus
- \$5M \$500M *development* cost

desire to make a hatful of microprocessors act as a single, large, fast cpu.

Origins of Distributed Systems 3: locality of reference

data often shows *geographic locality of reference* or *functional* locality of reference

so let's keep it where it's used

Origins of Distributed Systems 4: mainframe-as-dinosaur:

Multiplexing

hardware architects stood on their heads to make single fast cpus

(pipelining, pingpong memory, caching), but

- timesharing users mostly wanted their own private machines, so
- VM/370 (CP/CMS) multiplexed many small virtual cpus into one expensive big one.
- Cascaded complexities! KISS.

Origins of Distributed Systems 5: mainframe-as-dinosaur

monopoly vs. competition:

monopoly vs. competition:

mainframes:

proprietary

- hardware architecture (VAX, /370)
- operating system (Vax VMS, VM/370, MVS)
- networking architecture (DECNet, SNA)
- hence quasi-monopolistic
 - ("locked-in customers")
- hence expensive

monopoly vs. competition:

PCs:

- commodity microprocessors
 - (Intel n86, M 68000, PowerPC)
- commodity operating systems
 - (Windows, unixTM)
- hence cheaper cycles ($O(10 10^2)$!)
 - | (plus easier-ported applications
- more & smarter software development)

monopoly vs. competition:

PCs:

- lower hardware cost permitted:
 - cheaper computing
 - high-res graphical interfaces
 - plentiful cpu cycles, Mp, Ms (but not I/O)
- which permitted point-and-grunt user interfaces
- (MacOS, Windows, X-windows)

Hardware models for Distributed Systems:

Hardware Models:

1. Multiprocessor

shared Mp,

common clock

fast, error-free ipc over small, fast busses

Hardware Models:

2. distributed system

no physically shared Mp

- no common clock
- slow, long-latency, expensive, error-ridden ipc over
- long, slow LANs & WANs.

Hardware Models:

3. Future distributed systems?

- no physically shared Mp
- no common clock
- Fast, cheap error-free ipc over
- long, fast LANs & WANs.(OPTICAL FIBRE!)
 - but LATENCY will remain long, alas
 - (speed of photons or electrons in fibre or wire).

Evolution of commercial distributed systems: